Synaptic underpinnings of altered hippocampal function in glutaminase-deficient mice during maturation.

نویسندگان

  • Inna Gaisler-Salomon
  • Yvonne Wang
  • Nao Chuhma
  • Hong Zhang
  • Yaela N Golumbic
  • Andra Mihali
  • Ottavio Arancio
  • Etienne Sibille
  • Stephen Rayport
چکیده

Glutaminase-deficient mice (GLS1 hets), with reduced glutamate recycling, have a focal reduction in hippocampal activity, mainly in CA1, and manifest behavioral and neurochemical phenotypes suggestive of schizophrenia resilience. To address the basis for the hippocampal hypoactivity, we examined synaptic plastic mechanisms and glutamate receptor expression. Although baseline synaptic strength was unaffected in Schaffer collateral inputs to CA1, we found that long-term potentiation was attenuated. In wild-type (WT) mice, GLS1 gene expression was highest in the hippocampus and cortex, where it was reduced by about 50% in GLS1 hets. In other brain regions with lower WT GLS1 gene expression, there were no genotypic reductions. In adult GLS1 hets, NMDA receptor NR1 subunit gene expression was reduced, but not AMPA receptor GluR1 subunit gene expression. In contrast, juvenile GLS1 hets showed no reductions in NR1 gene expression. In concert with this, adult GLS1 hets showed a deficit in hippocampal-dependent contextual fear conditioning, whereas juvenile GLS1 hets did not. These alterations in glutamatergic synaptic function may partly explain the hippocampal hypoactivity seen in the GLS1 hets. The maturity-onset reduction in NR1 gene expression and in contextual learning supports the premise that glutaminase inhibition in adulthood should prove therapeutic in schizophrenia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroscience. How many cell types does it take to wire a brain?

M icroglia, highly mobile immune cells that reside in the central nervous system, are traditionally viewed as “barometers” of the brain because they rapidly respond to cellular damage caused by injury and disease by engulfing and cleaning up debris ( 1). Imaging studies, however, have revealed that microglia are also ceaselessly active in healthy brains, and other studies have shown that this a...

متن کامل

Neuronal Splicing Regulator RBFOX3 (NeuN) Regulates Adult Hippocampal Neurogenesis and Synaptogenesis

Dysfunction of RBFOX3 has been identified in neurodevelopmental disorders such as autism spectrum disorder, cognitive impairments and epilepsy and a causal relationship with these diseases has been previously demonstrated with Rbfox3 homozygous knockout mice. Despite the importance of RBFOX3 during neurodevelopment, the function of RBFOX3 regarding neurogenesis and synaptogenesis remains unclea...

متن کامل

Vezatin is essential for dendritic spine morphogenesis and functional synaptic maturation.

Vezatin is an integral membrane protein associated with cell-cell adhesion complex and actin cytoskeleton. It is expressed in the developing and mature mammalian brain, but its neuronal function is unknown. Here, we show that Vezatin localizes in spines in mature mouse hippocampal neurons and codistributes with PSD95, a major scaffolding protein of the excitatory postsynaptic density. Forebrain...

متن کامل

Loss of SynDIG1 Reduces Excitatory Synapse Maturation But Not Formation In Vivo

Modification of the strength of excitatory synaptic connections is a fundamental mechanism by which neural circuits are refined during development and learning. Synapse Differentiation Induced Gene 1 (SynDIG1) has been shown to play a key role in regulating synaptic strength in vitro. Here, we investigated the role of SynDIG1 in vivo in mice with a disruption of the SynDIG1 gene rather than use...

متن کامل

Aberrant morphology and residual transmitter release at the Munc13-deficient mouse neuromuscular synapse.

In cultured hippocampal neurons, synaptogenesis is largely independent of synaptic transmission, while several accounts in the literature indicate that synaptogenesis at cholinergic neuromuscular junctions in mammals appears to partially depend on synaptic activity. To systematically examine the role of synaptic activity in synaptogenesis at the neuromuscular junction, we investigated neuromusc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hippocampus

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2012